
Preprint

UCRL-JC-142563

U.S.Departmentof Energy

KI!!L

Lawrence
Livermore
National
Laboratory

The ASCI PSE Milepost:
Run-Time Systems
Performance Tests

B. R. de Supinski

This article was submitted to
The 2001 International Conference on Parallel and Distributed
Processing Techniques and Applications
Las Vegas, NV
June 25-28,2001

May 7,2001

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes maybe
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information

P.O. Box 62, Oak Ridge, TN 37831
Prices available from (423) 576-8401

http:/ /apoIlo.osti.gov/bridge/

Available to the public from the
National Technical Information Service

U.S. Department of Commerce
5285 Port Royal Rd.,

Springfield, VA 22161
http://www.ntis. gov/

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http://www.llnl. gov/ tid/Library.html

The ASCI PSE Milepost:

Run-Time Systems Performance

Bronis R. de Supinski
Center for Applied Scientific Computing

Lawrence Liverrnore National Laboratoq
Livermore, CA 94551

bronis@llnl.gov

Abstract: The Accelerated Strategic Comput-
ing Initiative (ASCI) Problem Solving Environment
(PSE) consists of the tools and libraries needed for the
development of ASCI simulation codes on ASCI
machines. The recently completed ASCI PSE Milepost
demonstrated that this software environment is avail-
able and jiznctional at the scale used for application
mileposts on ASCI White. As part of the PSE Milepost,
we pe~ormed extensive pe~ormance testing of several
critical run-time based systems. In this papec we
present microbenchmark results that compare the MPI
[5], Pthreads and OpenMP [7, 8] implementations on
ASCI White and ASCI Blue Pacific. Our results demon-
strate that these run-time systems on White have
improved sufficiently to accommodate the machine’s
approximately four-fold increase in processing capa-
bility over Blue Pacijic.

1. Introduction

The Accelerated Strategic Computing
Initiative (ASCI) Problem Solving
Environment (PSE) consists of the tools and
libraries needed for the development of ASCI
simulation codes on ASCI machines. The
recently completed ASCI PSE Milepost
demonstrated that this software environment
is available and functional at the scale used
for application mileposts on ASCI White.
This demonstration allows the ASCI code
developers to focus on application devel-
opment. As part of the PSE Milepost, we
performed extensive performance testing of
several critical run-time based systems. In this
paper, we present a subset of these results that
compare the MPI [5], Pthreads and OpenMP

[7, 8] implementations on ASCI White and
ASCI Blue Pacific; for the full report, see
http://www.llnl.gov/CASC/RTS_Report/overall.htrnl.

The tests include some of the largest scale
MM testing ever conducted -up to 1536 tasks
were used in the collective communication
tests. Our results demonstrate that these run-
time systems on White have improved suffi-
ciently to accommodate the machine’s
approximately four-fold increase in
processing capability over Blue Pacific.

2. Systems Tested

We present results for four different
IBM SP systems. The Combined Technology
Refresh (CTR) machine, which we also refer
to as Blue Pacific, has 336 four-way 332 MHz
PowerPC 604e SNIP nodes. The other three
systems all have Power3 (i.e. PowerPC 630)
CPUS. Snow has 16 NightHawk I nodes, so
each node is an eight-way SNIP with a 222
MHz CPU clock rate. ASCI White has 512
NIghtHawk II nodes, so each node is a
sixteen-way SMP with a 375 MHz clock rate.
However, at the time of our testing, White
was separated into two machines: Frost, a 376
node machine, and White, a 136 node
machine. The primary performance differ-
ences between the machines arose from the
number of GPFS nodes on each machine.
Since we do not present results for the
Milepost file system testing, our results for
the two machines were essentially identical.

This work was performed under the auspices of the U.S. Department of Energy by University of California
Lawrence Livermore National Laboratory under contract no. W-7405-Eng-48, UCRL-JC-142563.

900

800

700

600

500

400

300

~

200 g snow 2X4 ~
snow 4X2 -*
Blue 2X8 —=————

100 Blue 4X4 -w---
Blue 8X2 .

0
0 200000 400000 600000 800000 le+06

Message size (bytes)

Figure 1: Stencil Bandwidths with One Task Per Node

3. Stencil Communication Pattern
Testing Using NEWS05

NEWS05 measures the ability of
ASCI systems to support an important
message passing communication pattern, the
nearest neighbor communication pattern used
by two-dimensional stencil-based computa-
tions. The code’s name is derived from the
common name for this communication
pattern, NEWS, for the North-East-West-
South directions used to determine communi-
cation endpoints. The code tests all possible
two dimensional grid layouts for the total
number of MPI tasks in the job. The original
code, a Fortran code developed by Rex Evans,
exchanges messages of a size determined at
compile time. All of our runs used a modified
version, developed by Chris Chambreau and
Bronis R. de Supinski as part of the PSE
ASCI Simulation Development Environment
(ASDE) project, that tests multiple message
sizes during a single run. This version is
available along with the full report.

Comparing results of the stencil
bandwidths measured by NEWS05 on Snow
to those on Blue Pacific demonstrates that
improved network hardware will provide the
required stencil bandwidth for our applica-
tions. For example, threaded codes that use 64
tasks will benefit from an approximately 25%
increase in stencil bandwidth, as shown in
Figure 1, which presents NEWS05 results
using a single task per node on 8 nodes of
Snow and 16 nodes of Blue (64 CPUS in both
cases). These results compare the stencil
bandwidths available to a fully threaded code
using 64 CPUS on either machine. We note
that the Snow CPUS, despite the slower clock
rate, actually have greater processing power
since they can complete four floating point
operations per cycle, while the Blue CPUS
can only complete two FLOPS per cycle.
Thus, the higher bandwidth, combined with
the lower surface to volume ratio anticipated
with using 8 threads instead of 4, should be
sufficient to compensate for the higher FLOP
rates of Snow nodes.

3500

3000

2500

2000

1500

1000

500

0

.

0 20000 40000 60000 80000 100000 120000
Message size (bytes)

Figure 2: Stencil Bandwidths with 16 Tasks Per Node

The general result of the NEWS05
runs across message sizes is that the stencil
bandwidths increase rapidly with message
size, quickly approaching the asymptotic
aggregate bandwidth limit. The primary users
of the NEWS05 benchmark indicated that
medium message sizes are most relevant to
their application. Also, single task per node
results for message sizes up to 100,000 bytes
indicate little additional bandwidth is
achieved with larger messages. Therefore, we
focused the remainder of our tests on medium
message sizes. Further, as demonstrated by
our results in Figure 2 for 16 tasks per node
on 2 nodes of Frost, using shared memory for
on-node communication with multiple tasks
per node provides significantly increased
aggregate stencil bandwidths so we only ran
scalability tests with this option.

NEWS05 was designed to guide grid
layout. The results consistently indicate that
the actual stencil pattern has little effect on
the observed stencil bandwidth when on-node
shared memory is not used for MPI communi-

cations. However, not surprisingly, when on-
node shared memory communication is used
with tests using multiple nodes, higher
aggregate stencil bandwidths are observed
with grid layouts that result in shared memory
being used for more communication. In fact,
the N/2 rows by 2 columns tests consistently
produce the best results.

Scaling runs of NEWS05 demonstrate
that aggregate stencil bandwidths in White
scale well. Table 1 compares stencil
bandwidths using the grid layout that
minimizes off-node communication for 80000
byte messages on one node, two nodes and 96
nodes of White using on-node shared memory
for MPI communications.

These results clearly demonstrate that
point-to-point MPI messaging performance
scales to running MPI-everywhere on 96
nodes. In fact, the greatest per-task stencil
bandwidth is observed with 16 tasks per node
and 96 nodes, which outperforms even 15
tasks on a single node. Although this anomaly
is due in part to normal statistical variation in

Table 1: Scaling of Stencil Bandwidths

Tasks Per Node 15 16

Nodes 1 2 96 1 2 96

Aggregate Bandwidth (MIMs) 1,728 2,525 139,819 1,702 2,849 180,198

Per-Task Bandwidth (MIYs) 115.2 84.17 97.10 106.4 89.03 117.3

network measurements, we primarily attribute
the general improvement in per task
bandwidth when the number of nodes is
increased to the increased parallelism in the
network and switch adapters.

4. OpenMP Testing

The LLNL OpenMP Performance
Suite is a set of OpenMP performance tests
implemented in both Fortran and C. The
codes were developed by Bor Chan as part of
the PSIYASDE project. This suite measures
the cost of using individual OpenMP direc-
tives and of the auxiliary OpenMP locking
calls. Like previous OpenMP benchmarks [1],
our suite compares the time to perform some
work using the directive being measured to
the time of a reference measurement that
captures the cost of performing similar work
without using the directive. In our tests, the
work is simply a spin wait with a duration
parameter. The reported result is the
difference of the two timings, which captures
the directive’s overhead. The choice of
reference measurement is critical to the
accuracy of the benchmark. Many of our
suite’s benchmarks provide improved
accuracy since the reference runs include the
cost an OpenMP parallel construct, while
previous benchmarks used the cost of
performing the work in a serial region.

In the interest of space, we summarize
the results of our OpenMP tests. The results
for the full range of tests, including actual
output records, are available on the Web. As
part of the PSE milepost, we obtained results
on both Blue and Snow using three different
compilers: IBM’s XIC and xlf and KAI’s

guidec. Each executable was compiled on the
target host using optimization level -03 -
qtune=auto -qarch=auto as well as any flags
required to activate the OpenMP directives.
The most important of our results indicate
some scaling problems with our OpenMP
implementations. In particular, the perfor-
mance of the parallel for (DO in Fortran)
construct suffers significantly with the
dynamic and guided scheduling options when
the number of threads is increased from four
to eight. Some of the tests of OpenMP
synchronization constructs indicate a similar
performance drop at eight threads. We believe
these problems may be related to Pthreads
performance problems discussed in the next
section. In any event, none of the compilers
emerges as the clear best choice based on our
results. For some OpenMP constructs, such as
the parallel for/DO construct with guided
scheduling, the IBM compilers are clearly
superior, while the KAI compiler offers
significantly better performance for others,
such as the barrier construct.

5. Sphinx Testing

Sphinx is an integrated parallel
rnicrobenchmark suite. It was adapted from
the Special Karlsruhe MPI (SKaMPI)
Benchmark suite [9] by Bronis R. de Supinski
and other members of the PSIYASDE project,
including John May and Bor Chan. LLNL
adaptations include extensive tests of the
Pthreads interface [4] and an on-going
integration of the LLNL OpenMP Perfor-
mance Suite. In addition, several new MPI
tests have been added primarily focusing on
the performance of collective operations,

1.KCQJ’

,;~ _.’”

IJJJJ -“””’

mm-”
w
m
z
h

mSIltwi
I ❑sncw+, YIELDLIXIIWME ❑

II lFrd. YIELEILCX3PTIME =
—---- .

Je “

a Ei!

■ Frost

❑ Blu
■61ue, YIELDLMJPTIME = -

~.

Mu

d4LU

mm-

U’ ,
l.lvl)L\ .IJ Sm., ca t iti.mI JFlk

Figure 3: Performance of Pthread Mutex Pingpong

including the first widely available tests that
accurately measure the operation latency of
fan-out collective operations such as
MPI_Bcast [3]. The entire suite is imple-
mented in C and has been run on a wide
variety of platforms. Our Milepost Sphinx
testing has revealed some significant perfor-
mance problems with IBM’s Pthreads imple-
mentation and also led to the implementation
of an accurate and scalable test of the perfor-
mance of MPI_Scan.

Sphinx Pthreads Results

We ran the full set of Pthreads tests
included in Sphinx on Blue, Snow and Frost.
We normalized our results to account for the
different clock rates of the CPUS on the
machines. This normalization is reasonable
since we expect that the Pthreads routines to
offer little opportunity to exploit the super-
scalar features of the PowerPC architecture.
Our results generally indicate that IBM has
improved their Pthreads implementation
significantly. For example, we have observed

an approximately 60~0 reduction in the
number of cycles required to create a thread.
However, we observed a substantial increase
in the cost of exchanging information
between threads, as measured by our
condition pingpong and mutex pingpong tests
[4], either through condition variables or
mutexes when the threads are not bound to
specific CPUS by the user. Further testing
revealed that setting the YIELDLOOPTIME
environment variable to any value eliminates
the problems for mutexes, as shown in Figure
3. We are working with IBM in identifying
the reason for this anomaly, and continuing to
investigate the results for condition variables.

Sphinx MPI Results

We have run the full range of MPI
performance tests included in Sphinx on
Blue, Snow, Frost and White using both
IBM’s MPI implementation and MPICH
implementation that uses the MPL device.
Our results for the point-to-point tests, which
consist primarily of pingpong measurements

1200 .
.-.

1000 . .-
.

~
~

800 .
IBM: 16 Tasks per Node w/on-node shared memory

IBM: 1 Task per Node
~ 600 . IBM: 15 Tasks per Node w/on-node shared memory
3.+
b

MPICH: 15 Tasks per Node
400 - MPICH:1 Task per Node

200
ti

t. ~_. ...-
.

.

.. .

.

.

--

.--=
.= ----

.x -

I n- . = ---------- ?K.-.-. -.. --m---- _____________ I
00 20

#?rnber of SMP No@s
80 100

Figure 4: Overhead for MPl_Scan of 256 Bytes

for various combination of MPI send and
receive operations, are consistent with the
results of our NEWS05 testing. In particular,
using on-node shared memory provided
significantly greater bandwidth on all
machines, which is in contrast to previous
testing on Blue which had shown no signif-
icant difference between using on-node
shared memory or the switch for communi-
cation between tasks located on the same
node. Our comparisons of MPICH and IBM’s
MPI generally showed significantly better
performance for IBM’s implementation on all
of the machines, both for point-to-point and
collective operations, although there were
some exceptions.

Our initial results motivated the
implementation of a test for MPI_Scan that
accurately measures its operation latency, i.e.
the time required from the start of the
operation until it is completed at all partici-
pating MPI tasks. The original test of
MPI_Scan in Sphinx simply measured the
time at task zero for repeated calls to
MPI_Scan. Our results for this test, which
measures the overhead at task zero of the
MPI_Scan operation, indicate that the perfor-
mance of MPICH’S MPI_Scan implemen-
tation was constant as the number of tasks is
increased, as shown in Figure 4. The MPICH
implementation uses a linear algofithm in

which task zero sends to task one which then
sends to task two and so on until finally task
N-1 receives the partial result from task N-2.
Thus, our original test suffers from the
pipelining effect [2] in which the messages
from successive MPI_Scan calls are
completely overlapped. We solved this
problem similarly to our method for
accurately measuring MPI_Bcast operation
latency [3]: have task O wait to receive an
acknowledgment from task N-1 between
successive calls to MPI_Scan. Results for this
test, as shown in Figure 5, demonstrate that
the cost of MPI_Scan under MPICH increases
linearly with the number of tasks, as we
expect from examining the implementation.

Our results for other MPI collective
operations helped reveal some performance
deficiencies in IBM’s MPI library. Some were
caused by optimizations appropriate for
systems with uniprocessor nodes but actually
degraded performance with SMP nodes. We
are working with IBM to resolve other perfor-
mance problems for the collective implemen-
tations. For example, collective operation
performance does not improve as significantly
as we would expect with on-node shared
memory compared to using the switch for all
MPI communication, given the approximate
reduction of three levels in communication
tree height with sixteen way SMP nodes.

140000

120000

100000

40000

20000

0

MPICH: 16 Tasks per Node —
MPICH: 15 Tasks per Node -x—

IBM: 16 Tasks per Node —
IBM: 16 Tasks per Node wlon-node shared memory *

IBM 15 Tasks per Node o
IBM: 15 Tasks per Node wlon-node shared memory -

MPICH: 1 Task per Node -=--
IBM: 1 Task per Node -X

/-=

.
w .. + +

+ +
+ _ -a --- - - - -.
e ----------- 4–

.

0 20 40 60 80 100
Number of SMP Nodes

Figure 5: Operation Latency for MPl_Scan of 256 Bytes

6. Conclusion

We presented results of the run-time
systems performance testing portion of the
ASCI PSE Milepost. Our results demonstrate
that the performance of these systems is suffi-
cient to support ASCI White’s approximately
four-fold increase in processing power over
Blue Pacific. We identified a performance
anomaly for the Pthreads implementation on
White: setting the YIELDLOOPTIME
environment variable has a significant impact
of the performance of Pthread mutexes with
unbound threads. Finally, we presented
results for the first scalable, accurate
benchmark of the MPI_Scan collective
operation; it shows the poor scaling of the
MPICH implementation while indicating that
IBM’s is a more scalable implementation.

7. References

[1] J.M. Bull, “Measuring Synchronisation and Sched-

uling Overheads in OpenN@,” Proceedings of the First
European Workshop on OpenMP, 1999, pp. 99-105.

[2] M. Bemaschi and G. Iannello, “Collective Commu-

nication Operations: Experimental Results vs. Theory,”
Concurrency: Practice and Experience, 1998, Vol. 10,
No. 5, pp. 359-386.

[3] B.R. de Supinski and N. Karonis, “Accurately Mea-
suring Broadcasts in a Computational (lrid~’ Proc. of
the 8th Intl. Symp. on High Performance Distributed
Computing, 1999, pp. 29-37.

[4] B.R. de Supinski and J. May, “Benchmarking

Pthreads Performance;’ Proc. of the 1999 Intl. Conj on
Parallel and Distributed Processing Techniques and
Applications, 1999, pp. 1985-1991.

[5] W. Gropp, E. Lusk, N. Doss and A. Skjellurn, “A
High-Performance, Portable Implementation of the
MPI Message Passing Interface Standard;’ Parallel
Computing, 1996, Vol. 22, No. 6, pp. 789-828.

[6] Message Passing Interface Forum, “MPI: A Mes-
sage Passing Interface Standard,” International Journal
of Supercomputing Applications, 1994, Vol. 8, No. 3/4,
pp. 165-414.

[7] OpenMP Architecture Review Board, OpenMP
Fortran Application Program Inte~ace, 1997.

[8] OpenMP Architecture Review Board, OpenMP C
and C++ Application Program Interjace, 1998.

[9] R.H. Reussner, “User Manual of SKaMPI, Special
Karlsruher MPI-Benchmark;’ Tech. Report, University

of Karlsruhe, 1998.

